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Technical Challenges

Remoteness and Other Issues

* Autonomy
* Able to make own decisions (but also shared control)

* Communication
* Limited/no bandwidth and/or intermittent
* Long round-trip delays and poor situational awareness

* Adaptive

* Respond to changing environment and own state (repair)
* Long-lived

* Missions of months or more



Challenges of Shared Control

Expectations on the Operator

* What is it realistic to assume of drivers
* How long can they retain situational awareness?

* How will they react in an incident? For example some
data from Volvo relating to emergency braking
* 1/3rd took control promptly
* 1/3rd took control late, waiting for the autonomy

* 1/3rd took no action, wanting to avoid “interfering” with the
autonomy

Automation Expectation Mismatch: Incorrect Prediction
Despite Eyes on Threat and Hands on Wheel

Trent W. Victor, Emma Tivesten, Par Gustavsson, Joel Johansson
Fredrik Sangberg, and Mikael Ljung Aust, Volvo Cars, Gothenburg, Sweden



Assurance Challenges
Safety and Other Properties

* Generic assurance and regulatory challenge

* A safe system cannot be deployed or is frequently
unavailable (losing benefit)

* An unsafe system is deployed (as it is approved due to
lack of contrary evidence)

* Similar issues for availability, mission effectiveness ...

* Addressing the technical challenges

* Especially verification and validation for critical
technologies including machine learning (ML)



Fundamental Challenges
Al/ML vs Human Decision-Making

* Autonomous systems

* Transfer decision-making from human to machine (Al/ML)
* ML learns future behaviour generalising from training data

* Humans have a semantic model, e.g. know what a
valve is and its likely behaviour

* Machines do not have these models

* Humans have contextual models, e.g. know what a
pipeline is
* And the effects of pressure, corrosion, silting up ...
* Machines do not have these models



Fundamental Challenges
Al/ML Safety

* Safety processes assume
* Know system boundary and it is fixed
* Know (can specify precisely) system behaviour
* Know system environment and can assess hazards
* Life-cycle progressively adds detail so can analyse easily

* With Al/ML

* Behaviour not known precisely (learnt not specified)
* Environment extremely complex (unpredictable)

* Life-cycle highly iterative

* Boundary and functions can also change
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Assuring Autonomy

Response to Foresight Review

* Review published in October 2016  [Rws

* |dentified “white spaces” in

assurance and regulation of RAS

* York-led Foresight review of
Ork-ied programme robotics and

* January 2018 to December 2022(3) BEIV te]ale]aaleI05;

* A strong focus on ‘demonstrators’ systems
and Working ‘bottom up’ Serving a safer world

* Developing international links,
and seeking to influence policies
and regulations
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Demonstrator Projects

Relevant to Remote Inspection

Sense-Assess-Explain (SAX)

Building autonomous vehicles that can sense and fully understand
their environment, assess their own capabilities, and provide causal
explanations for their own decisions.
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Assurance
Assurance and V&V

* Assurance can be thought of as:

* Confidence that the system behaviour is as intended in
the environment of use (as intended includes safe)

* For autonomy, three key elements to assurance

* Defined intent - know what it should do and avoid doing
(e.g. safety) [Validation]

* Correct implementation - meets its intent [Verification]

* Malfunction control - behaves appropriately when
things go wrong, e.g. sensors are affected by weather,
internal components, etc. [Verification & Validation]



A System Model

Sense-Understand-Decide-Act (SUDA)
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Sense Understand Decide Act

* System operates cyclically
* Understanding includes prediction, e.g. trajectory of drone

* Al/ML usually limited to Understand and Decide (SUDA)
* Variants of model, e.g. Sense and Understand merged




Assuring Machine Learning
ML Process and SUDA
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Assuring Machine Learning

Table 4. Open challenges for the assurance concerns associated with the Model Learning (ML) stage

1D Open Challenge Desideratum (Section)

MLO1 Selecting measures which represent operational context
MLO02 Multi-objective performance evaluation at run-time L

: ; : ) . Performant (Section 5.4.1)
MLOD3 Using operational context to inform hyperparameter-tuning strategies

ML04 Understanding the impact of hyperparameters on model perfﬂrmaHCE

MLO05 Decoupling the effects of perturbations in the input space

; ; : Robust (Section 5.4.2
MLO06  Inferring contextual robustness from evaluation metrics ( 354)

MLO07 Identifying similarity in operational contexts

Re ble (Section 5.4.3
MLO8 Ensuring existing models are free from faults usable (Section 5.4.3)

ML09  Global methods for interpretability in complex models

Int table (Section 5.4.4
ML10  Inferring global model properties from local cases NESpratibie (o B A4
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support reuse [2]

Transfer Learning [1?3] v v v *
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Assurmg the Machine Learnmg Lifecycle: Desiderata, Methods, and Challenges
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Rob Ashmore, Radu Calinescu, Colin Paterson
"¢ = activity that the method is typically used in; v’ = activity that may use the method
"% = desideratum supported by the method; ¥ = desideratum partly supported by the method
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Assuring Machine Learning
AMLAS - Assurance of Machine Learning for RAS

o i ML Component Development >
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* Defined assurance process for ML components

* Results in a {compelling?} safety case for ML
component(s) of the system

* Considers safety of ML in system context



An Al Safety Process

SUDA, AMLAS and More

* Safety processes
* SOCA: acceptability
* SACE: whole system
* SAUS: understanding

* SADA: decision-
making

* AMLAS: assurance of
ML

* Shared control is
addressed by SACE

SR - Safety Requirement
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Legal Issues
Mind the Gaps

* In many legal frameworks need to “fix where
responsibility lies” to have a case

* Autonomy can introduce “liability gaps” - despite an
accident can’t attribute responsibility (appropriately)

* For example, the Tempe autonomous vehicle fatality -
Uber found to have no case to answer under Arizona law
* Likely to be a widespread issue

* Also, ethical perspective on when it is appropriate to
attribute responsibility to (legal individuals)

Burton et al. “Mind the gaps: Assuring the safety of autonomous systems from an engineering,
ethical, and legal perspective.” Artificial Intelligence, Volume 279, February 2020



RIMA Project

Robotics for Inspection & Maintenance

* EU Project - funded by European Union'’s
Horizon2020 initiative

* Major focus is on infrastructure

* Report written by University of York covering legal
framework for operating RAS in different countries
recently published

* Takes a legal and regulatory perspective

* Some of the legal issues and constraints
likely to be of wider significance

D7.4 Review of legal frameworks, standards and best practice in
verification and assurance for infrastructure robotics




Insights
From AAIP, RIMA, etc.

* Verification is hard

* A lot missing, e.g. appropriate performance criteria, test
coverage criteria informed by fault models for ML

* Validation is harder
* Need to link to safety (availability, maintainability ...)

* Adaptation goes beyond (most) current regulations
* Will need to consider dynamic risk assessment

* Shared control is problematic (NB ALKS)

* Need refined safety processes with input from human
factors specialists



Regulatory Strategies

Regulation and Innovation

* No response - is “mute” about Al and RAS

* Prevention-oriented - proscribes use of aspects of
Al and RAS, e.g. adaptation in operation

* Control-oriented - seek to control the technology

* Toleration-oriented - allow innovation, with a
degree of scrutiny - i.e. largely responsive

* Adaptation-oriented - changes to respond to the
technology - but how do we keep pace?



Conclusions
V&YV for Inspection Robotics

* AAIP considering broad issues of RAS assurance

* Focus on safety, but likely that approach to system models and
ML assurance (AMLAS) of wider applicability

* Some demonstrator projects of direct relevance

* Interested in collaborating on applications
* Validate/refine AMLAS, encourage links for demonstrators
* Address issues of “how much evidence is enough”

* Are open research challenges

* For example, test coverage criteria, safe interaction of
“swarms” of robots (and humans), and security-informed safety

* Many will benefit from interdisciplinary approaches
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