

Developing Guidelines for Autonomous Systems in Hazardous Environments

Matt Luckcuck

Department of Computer Science, Maynooth University, Ireland

16th of March 2022

Matt Luckcuck

Developing Guidelines for Autonomous Systems in Hazardous Environments

"White Paper" – report or guide that 'provides a basis for further consultation and discussion'

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments
- Co-written with help from the Office for Nuclear Regulation (ONR)

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments
- Co-written with help from the Office for Nuclear Regulation (ONR)
- Autonomous system makes decisions requiring intelligence and situational understanding

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments
- Co-written with help from the Office for Nuclear Regulation (ONR)
- Autonomous system makes decisions requiring intelligence and situational understanding
- Often focussing on autonomous robots...

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments
- Co-written with help from the Office for Nuclear Regulation (ONR)
- Autonomous system makes decisions requiring intelligence and situational understanding
- Often focussing on autonomous robots...
 - Physical

- "White Paper" report or guide that 'provides a basis for further consultation and discussion'
- Principles for the Development and Assurance of Autonomous Systems for Safe Use in Hazardous Environments
- Co-written with help from the Office for Nuclear Regulation (ONR)
- Autonomous system makes decisions requiring intelligence and situational understanding
- Often focussing on autonomous robots...
 - Physical
 - Logical

Nuclear Robotics Certification Workshops

- Workshops with ONR
- Open forum for nuclear operators, supply chain, and regulator, plus academia

Exploring...

- How is the safety of nuclear robots assessed?
- What changes with robotics and autonomy?
- Aiming...
 - Clarify the questions
 - Bridge gaps in knowledge

Workshops

Matt Luckcuck

Developing Guidelines for Autonomous Systems in Hazardous Environments

4/15

First workshop – Sept. 2018

- Introduce nuclear safety assessment
- Highlight capabilities and challenges of autonomy
- Talks from:
 - Robotics and AI in Nuclear (RAIN) Hub
 - Assuring Autonomy International Programme (AAIP, University of York)
 - Office for Nuclear Regulation (ONR)
- Group discussion
- Website: tiny.cc/SafetyCaseWorkshop1

Workshops

Second Workshop - Apr. 2019

- Scope challenges of autonomous robots in the nuclear industry
- Four case studies:
 - UK Atomic Energy Authority
 - National Nuclear Laboratory
 - Sellafield
 - Atomic Weapons Establishment
- Discussion Sessions
 - Current Hazards
 - Future (Autonomy) Hazards
- Website: tiny.cc/SafetyCaseWorkshop2

White Paper

Matt Luckcuck

Developing Guidelines for Autonomous Systems in Hazardous Environments

7/15

Scope

- Good practice for developing autonomous robotic systems amenable to strong V & V
- Add-on to existing standards and guidance
- Audience: developers and verifiers of autonomous and robotic systems
- Authors:
 - Matt Luckcuck, Louise Dennis, Michael Fisher (RAIN)
 - Steve Frost, Andy White, Doug Styles (ONR)

PRINCIPLES FOR THE DEVELOPMENT AND ASSURANCE OF AUTONOMOUS SYSTEMS FOR SAFE USE IN HAZARDOUS ENVIRONMENTS

> Available: http://tiny.cc/ AutonomyWhitePaper

White Paper

High-Level Recommendations

1 System has hardware and software

White Paper

- **1** System has hardware and software
- 2 Hazard assessments to include ethical hazards

- 1 System has hardware and software
- 2 Hazard assessments to include ethical hazards
- 3 Take both a corroborative and a mixed-criticality approach to Verification & Validation

- 1 System has hardware and software
- 2 Hazard assessments to include ethical hazards
- 3 Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach

- 1 System has hardware and software
- 2 Hazard assessments to include ethical hazards
- **3** Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach
 - Corroborative approach (A corroborative approach to verification and validation of human-robot teams Webster et al. 2019)

- System has hardware and software
- 2 Hazard assessments to include ethical hazards
- 3 Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach
 - Corroborative approach (A corroborative approach to verification and validation of human-robot teams Webster et al. 2019)
- 4 Autonomous components should be transparent and verifiable

- System has hardware and software
- 2 Hazard assessments to include ethical hazards
- **3** Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach
 - Corroborative approach (A corroborative approach to verification and validation of human-robot teams Webster et al. 2019)
- 4 Autonomous components should be transparent and verifiable
- 5 Tasks and missions should be clearly defined

- System has hardware and software
- 2 Hazard assessments to include ethical hazards
- **3** Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach
 - Corroborative approach (A corroborative approach to verification and validation of human-robot teams Webster et al. 2019)
- 4 Autonomous components should be transparent and verifiable
- 5 Tasks and missions should be clearly defined
- **6** Dynamic verification to complement static verification

- System has hardware and software
- 2 Hazard assessments to include ethical hazards
- **3** Take both a corroborative and a mixed-criticality approach to Verification & Validation
 - Mixed-criticality approach
 - Corroborative approach (A corroborative approach to verification and validation of human-robot teams Webster et al. 2019)
- 4 Autonomous components should be transparent and verifiable
- 5 Tasks and missions should be clearly defined
- **6** Dynamic verification to complement static verification
- 7 Requirements traceability, through development and into deployed system

Three Themes for Autonomous Systems

Developing Guidelines for Autonomous Systems in Hazardous Environments

Assess for Ethics...

- Consider hazards that aren't just 'safety' or 'security'
- E.G. machine learning system trained on biased data
- Avoid these problems being 'baked in' to the system
- One direction: BS 8611 "Ethical Design and Application of Robots and Robotic Systems"

Assess for Ethics...(as well)

- Consider hazards that aren't just 'safety' or 'security'
- E.G. machine learning system trained on biased data
- Avoid these problems being 'baked in' to the system
- One direction: BS 8611 "Ethical Design and Application of Robots and Robotic Systems"

Your Sector isn't Special

- Introducing autonomy bring common challenges
- Autonomy challenges should be tackled in a sector-agnostic way
- Autonomous robotic systems may be dangerous to physically test in early development
 - Lean on code analysis and simulation
- Autonomous system's decisions
 - Analysable
 - Cover reactions to unexpected events in environment

Design for Verification

Autonomous components (may) make decisions without human approval

- Transparent enable examination
- Verifiable correctness of behaviour
- Explainable understandable by (normal) humans
- E.G. Formal techniques exist for verifying high-level decisions

Ultimately...

Design for Verification

Autonomous components (may) make decisions without human approval

- Transparent enable examination
- Verifiable correctness of behaviour
- Explainable understandable by (normal) humans
- E.G. Formal techniques exist for verifying high-level decisions
- Ultimately... How will you explain it to the regulator?

Autonomous Systems: New Challenges and New Opportunities

Autonomous Systems: New Challenges and New Opportunities

Challenges...

- Safety and security
- Other ethical issues: privacy, equality, and human autonomy
- Many challenges cross-sector

- Autonomous Systems: New Challenges and New Opportunities
- Challenges...
 - Safety and security
 - Other ethical issues: privacy, equality, and human autonomy
 - Many challenges cross-sector

Opportunities...

- Help with dangerous jobs
- Inspect hazardous areas
- Enable decisions to be closely analysed

- Autonomous Systems: New Challenges and New Opportunities
- Challenges...
 - Safety and security
 - Other ethical issues: privacy, equality, and human autonomy
 - Many challenges cross-sector
- Opportunities...
 - Help with dangerous jobs
 - Inspect hazardous areas
 - Enable decisions to be closely analysed
- Price: consider how the system will be introduced and used, and design for verification
- Important for regulatory sign-off and worker/public trust

Links

- Workshop 1: http://tiny.cc/SafetyCaseWorkshop1
- Workshop 2 (including link to report): http://tiny.cc/SafetyCaseWorkshop2
- White Paper: http://tiny.cc/AutonomyWhitePaper
- UoM Policy Blog Post: http://tiny.cc/UoMBlog

Thanks